
Scaling geospatial processes on
Harvard’s high-performance cluster

Devika Kakkar and Ben Lewis
Harvard Center for Geographic Analysis

Datafest 2020

 Harvard University, January 21st

“Big” geospatial data: even a million features
• Most sets of geographic features are modest: thousands to millions in size. But...
• Increasing spatial resolution is changing this: e.g. National Hydro Datasets Medium Res

-> ~3M reaches, High Res -> ~30M reaches. Similar for gridded data, e.g. 10m DEM ->
1m Lidar-based 3DEP increases volume 100x.

• Time is changing this: multiple observations and predictions for multiple feature
properties quickly combine into billions of records.

• Traditional GIS software struggles to access and visualize, let alone analyze such scales
and structures of datasets.

• Datasets with 1-100 billion records are becoming common in academic, business, and
government domains

FAS Research Computing (FASRC)
● FAS Research Computing offers:

○ Supercomputing Environment (Cannon HPC Cluster)
○ Lab Storage
○ Instrument Computing Support
○ Hosted Machines (Virtual and Physical)

Supercomputing Environment: Cannon [1]

Cannon Cluster [1]

● Compute: 100,000 compute nodes,
8-64 cores/node, 12Gb to 512Gb
memory/node, 2,500,000 NVIDIA
GPU cores

● Software: CentOS 7 operating
system, Slurm job manager,
Singularity, 1000+ scientific tools and
programs

● Storage: 100 GB (Home dir), 4TB+
(Lab storage), 70Gb/node (Local
scratch), 2.4PB (Global scratch),
3PB (Persistent Research data)

● #144 in TOP500 Supercomputers in
world

Cluster Basics

Basic Architecture of FASRC Cluster [1]

Slurm Workload Manager
● Slurm is an open-source cluster management and job scheduling system for Linux

clusters
● Slurm is the workload manager on about 60% of the TOP500 supercomputers.
● It performs the following key functions:

○ Allocates resources
○ Provides a framework for managing jobs
○ Resolves conflicts for resources

● FASRC uses Slurm to manage workload on the Cannon cluster

https://en.wikipedia.org/wiki/TOP500

Slurm scheduler
● FASRC uses Slurm built-in job accounting and fairshare system to ensure that

resources are used fairly
● Every lab has a base Share of the community-wide system
● Fairshare score of a lab is then calculated based off of their Share versus the amount of

the cluster they have actually used
● Fairshare score is then utilized to assign priority to their jobs relative to other users on

the cluster
● TRES: allows the scheduler to charge back users for how much they have used

different features on the cluster
● sshare: A tool that can be used to see your current fairshare

Singularity on the cluster
● Singularity is a free, cross-platform and open-source technology used for

containerization of workloads
● As of 2018, the Singularity user base is estimated to be greater than 25,000

installations and includes users at academic institutions such as Ohio State University,
and Michigan State University, as well as top HPC centers like Texas Advanced
Computing Center, San Diego Supercomputer Center, and Oak Ridge National
Laboratory.

● Singularity has been deployed on FASRC cluster
● Singularity enables users to have full control of their operating system environment
● FASRC uses Singularity instead of Docker for security reasons
● Singularity can import Docker containers

https://en.wikipedia.org/wiki/Installed_base
https://en.wikipedia.org/wiki/Ohio_State_University
https://en.wikipedia.org/wiki/Michigan_State_University
https://en.wikipedia.org/wiki/Texas_Advanced_Computing_Center
https://en.wikipedia.org/wiki/Texas_Advanced_Computing_Center
https://en.wikipedia.org/wiki/San_Diego_Supercomputer_Center
https://en.wikipedia.org/wiki/Oak_Ridge_National_Laboratory
https://en.wikipedia.org/wiki/Oak_Ridge_National_Laboratory

Data Science apps on FASRC

GIS Databases for Big Data
● PostGreSQL: Powerful, open source object-relational database system
● PostGIS: Provides spatial objects for the PostgreSQL database, allowing storage and

query of information about location and mapping
● OmniSci:

○ Designed to overcome the scalability and performance limitations of legacy
analytics tools

○ Super fast queries/analytics (including machine learning) of unindexed data (open
source)

○ Super fast interactive rendering (free for educational use) of millions or billions of
features, on-the-fly on a map

○ Leverages the massively parallel processing of GPUs alongside traditional CPU
compute

GIS apps that will be available in the future

GIS Apps on FASRC
● An app on FASRC remote desktop vdi.rc.fas.harvard.edu to run the server
● Code for the app will be in user home folder
● The apps in the personal ~/fasrc/dev/ folder will show up in the "Develop" menu and

under "My Interactive Sessions" once you login to vdi.rc.fas.harvard.edu
● One can launch the app, and upon successful start of the job, on the dashboard you will

get info on how to connect
● The location where the job is staged and the log is stored is reachable clicking next to

"session ID"
● To make changes in that app,create a branch, make changes and we can then merge it
● Github repo: https://github.com/cga-harvard/OmniSci_on_HPC

https://github.com/cga-harvard/OmniSci_on_HPC

POSTGRES on FASRC

OmniSci on FASRC

OmniSci on FASRC

Distributed OmniSci on FASRC

Distributed Configuration OmniSci [5]

Illustrative Use Case

Problem Introduction

● K Nearest Neighbor (KNN)
calculation is a well known GIS
operation which is hard to scale

● The three common methods of
finding KNN:
○ Traditional algorithms
○ Geohash based KNN
○ Index-based Search

Geohash Clustering with KNN search

● Combining two popular spatial index
for best results: Geohash and R-tree

● A two layer approach:
○ Bottom layer : Geohash index

based clustering
○ Top layer: R-tree index based

searches
● Extremely fast: 200,000 distance

calculations per second
● On moderate resources: m4.xlarge

EC2 with 300 GB EBS
● Cost efficient: $175/month

Use Case: Partisan Analysis

● Construct individual levels of partisan exposure at several approximated geographies
for each voter in US

● Performing k-means clustering on a voter dataset of 180 million, with k=1000
● Solution wrapped as Amazon AMI for easy and fast implementation

○ AMI replicates the entire KNN computation environment on launch
○ User friendly solution with no GIS expertise needed
○ Results stored as PostGIS dumps on S3 in instead of EBS
○ 87% compression in the result dataset obtained
○ 18TG of DB reduced to 1500 GB
○ Storage cost reduced form $1800/month to $35/month (98% reduction)

Objective

The main objective of this work are as follows:

● To make k-means calculations against large datasets fast and easy
● A variation on our approach could likely be used to speed up other spatial processes

which require neighborhood search operations

Related work elsewhere

● Another way of calculating KNN on a big dataset is distributed processing on Spark
using scikit-learn, however:
○ Spark’s MLlib doesn’t have built-in support for KNN calculations, but scikit-learn

does
○ scikit-learn’s k-NN kneighbors() method is a computational bottleneck for large

datasets and needs parallelization.
○ scikit-learn’s k-NN kneighbors() is inserted into a Spark map function and run in a

distributed environment

How ours is different

● Extremely Fast: 200,000 distances/sec
● Resource Optimized: Basic EC2 m4.xlarge server
● Two layered approach:

○ Bottom layer of Geohash based clustering assisting fast data retrieval by the
○ Top layer of R-tree based KNN search

● Dimensional reduction: 2D coordinates reduced to 1D Geohash providing
compressed storage

● Cost Effective: Infrastructure costs only $175/month
● Hardware and Software Optimization: Optimization of search algorithm and hard disk

storage
● Customized AMI: Ready to use
● Compressed Storage: 18 TB reduced to 1.5 TB
● GPU based: Extremely fast GPU based processing of results

Related work using OmniSci
● Challenge: Processing 180 billion

distances to calculate the partisan
weights of each voter

● Goal: Minimize overall time for
geospatial analysis of big data

● Method: Use GPUs instead of CPUs
● Platform: OmniSci
● Real time interactive visualization
● Time and cost saving over traditional

approach

Solution using FASRC

● AWS setup is efficient but expensive to use long term
● FASRC provides a more sustainable long term solution
● Our plan is to install PostGIS and OmniSci as public apps on the FASRC cluster

○ Thereafter, transfer the PostGIS based KNN solution to FASRC
○ Transfer Omnisci based modelling solution to FASRC

● I/O is a big overhead in problems of these scales so loading the data once and utilizing
it over and over again makes it more efficient

● Divide and Conquer approach: Currently, multiple AWS instances are launched using
the AMI to replicate the database over multiple instances and hence save I/O time

● Replicate AWS: Run several asynchronous jobs on FASRC which will run independent
calculations and then combine the results in the end

Future Plans
● Installing ArcGIS Enterprise which

consists of:
○ ArcGIS Enterprise Portal
○ ArcGIS Server
○ ArcGIS Data Store

● Exploring other possible use cases
such as:
○ Disease Surveillance
○ Global Internet access mapping
○ National Water Model
○ EPA Air Quality Modeling

● Buying paid infrastructure on FASRC
for hosted apps

ArcGIS Enterprise [4]

References
[1] Introduction to Cluster Computing:
https://www.rc.fas.harvard.edu/wp-content/uploads/2019/12/Intro-to-Cannon.pdf

[2] Postgis- https://postgis.net/

[3] Slurm Workload Manager: https://slurm.schedmd.com/overview.html

[4] Singularity on Cluster:
https://www.rc.fas.harvard.edu/resources/documentation/software/singularity-on-the-cluster/#odyssey

[5] OmniSci Overview: https://docs.omnisci.com/latest/4_distributed.html

[6] ArcGIS Enterprise: https://enterprise.arcgis.com/en/documentation/install/

Evaluation: http://bit.ly/datafest_eval

https://www.rc.fas.harvard.edu/wp-content/uploads/2019/12/Intro-to-Cannon.pdf
https://postgis.net/
https://slurm.schedmd.com/overview.html
https://www.rc.fas.harvard.edu/resources/documentation/software/singularity-on-the-cluster/#odyssey
https://docs.omnisci.com/latest/4_distributed.html
https://enterprise.arcgis.com/en/documentation/install/

