Predicting Innovative Firms using Web Mining and Deep Learning

Date: 

Thursday, June 6, 2019, 12:00pm to 1:30pm

Location: 

CGIS South S050

by Jan Kinne, University of Salzberg.

Abstract:
Innovation is considered as a main driver of economic growth. Promoting the development of innovation through STI (science, technology and innovation) policies requires accurate indicators of innovation. Traditional indicators often lack coverage, granularity as well as timeliness and involve high data collection costs, especially when conducted at a large scale. In this paper, we propose a novel approach on how to create firm-level innovation indicators at the scale of millions of firms. We use traditional firm-level innovation indicators from the questionnaire-based Community Innovation Survey (CIS) to train an artificial neural network classification model on labelled (innovative/non-innovative) web texts of surveyed firms. Subsequently, we apply this classification model to the web texts of hundreds of thousands of firms in Germany to predict their innovation status. Our results show that this approach produces credible predictions and has the potential to be a valuable and highly cost-efficient addition to the existing set of innovation indicators, especially due to its coverage and regional granularity.

Short bio:
Jan Kinne is a researcher in the Economics of Innovation department at ZEW Center for European Economic Research in Mannheim Germany and an external PhD student in Geoinformatics at the University of Salzburg. His main research interests focus on innovation research using web mining and geospatial analysis.

 

image